• 首页 | 期刊简介  | 
    编委会
    编委会
    青年编委会
     | 道德声明 | 投稿指南 | 联系我们 | 期刊订阅 | English
基于MaxEnt模型的菜豆象和蚕豆象在中国的适生区预测
点此下载全文
引用本文:易山青,彭硕,贾涛,王雁楠,黄宏坤,赵紫华.基于MaxEnt模型的菜豆象和蚕豆象在中国的适生区预测.植物保护学报,2023,50(6):1480-1490
DOI:10.13802/j.cnki.zwbhxb.2023.2023824
摘要点击次数:
全文下载次数:
作者单位E-mail
易山青 中国农业大学植物保护学院, 农业农村部植物检疫性有害生物监测防控重点实验室, 北京 100193  
彭硕 中国农业大学植物保护学院, 农业农村部植物检疫性有害生物监测防控重点实验室, 北京 100193  
贾涛 农业农村部农业生态与资源保护总站, 北京 100125  
王雁楠 中国农业大学植物保护学院, 农业农村部植物检疫性有害生物监测防控重点实验室, 北京 100193  
黄宏坤 农业农村部农业生态与资源保护总站, 北京 100125  
赵紫华 中国农业大学植物保护学院, 农业农村部植物检疫性有害生物监测防控重点实验室, 北京 100193 zhzhao@cau.edu.cn 
中文摘要:为减少外来入侵物种菜豆象Acanthoscelides obtectus和蚕豆象Bruchus rufimanus对中国造成的潜在威胁,收集这2种豆象的全球地理分布数据,采用Pearson相关性分析和主成分分析分别从19个环境变量中筛选关键环境变量,采用MaxEnt模型对历史气候条件下和未来气候情景下这2种豆象在中国的适生区进行预测,并对预测结果进行分析。结果显示,经Pearson相关性分析共筛选出4个关键环境变量用于菜豆象适生性区的模型构建,分别为最暖季度平均温度、最干月份降水量、年气温变化范围及最湿季度降水量,其对MaxEnt模型的累积贡献率分别为31.6%、28.4%、26.3%和13.7%;经Pearson相关性分析共筛选出4个主要关键环境变量用于蚕豆象适生性区的模型构建,分别为最冷季度平均温度、最干月份降水量、最热月份最高温度和最湿月份降水量,其对MaxEnt模型的累积贡献率分别为48.5%、39.5%、7.8%和4.2%。MaxEnt模型重复运行10次后,菜豆象训练数据的平均AUC值为0.938,蚕豆象训练数据的平均AUC值为0.963,均显著高于随机模型的AUC值,表明基于MaxEnt模型的菜豆象和蚕豆象在中国适生区的预测结果准确。未来气候情景下,这2种豆象在中国的适生区均呈现向北扩张的趋势,需加强对这2种豆象的检疫与防治,严防发生区域进一步扩大。
中文关键词:菜豆象  蚕豆象  MaxEnt模型  生物入侵  适生区  生物气候因素
 
Prediction of the potential suitable areas for bean weevil Acanthoscelides obtectus and the broad bean weevil Bruchus rufimanus in China based on the MaxEnt model
Author NameAffiliationE-mail
Yi Shanqing Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs
College of Plant Protection, China Agricultural University, Beijing 100193, China 
 
Peng Shuo Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs
College of Plant Protection, China Agricultural University, Beijing 100193, China 
 
Jia Tao Agency of Agricultural Ecology and Resource Protection, Ministry of Agriculture and Rural Affairs, Beijing 100125, China  
Wang Yannan Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs
College of Plant Protection, China Agricultural University, Beijing 100193, China 
 
Huang Hongkun Agency of Agricultural Ecology and Resource Protection, Ministry of Agriculture and Rural Affairs, Beijing 100125, China  
Zhao Zihua Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs
College of Plant Protection, China Agricultural University, Beijing 100193, China 
zhzhao@cau.edu.cn 
Abstract:To reduce the damage caused by bean weevil Acanthoscelides obtectus and broad bean weevil Bruchus rufimanus in China, the data on the potential geographical distribution of these two insects were collected. Key environmental variables were selected from 19 variables through Pearson correlation analysis and principal component analysis. Subsequently, the potential suitable areas for these two bean weevils under current climate condition and future climate scenarios in China were analyzed using the MaxEnt model. As a result of the analysis, four key environmental variables were selected by Pearson correlation analysis and principal component analysis for modeling the suitable area of A. obtectus,including the average temperature in the warmest quarter, the driest monthly precipitation, annual temperature range, and precipitation in the wettest quarter. The MaxEnt model yielded cumulative contribution rates of 31.6%, 28.4%, 26.3%, and 13.7% for each variable, respectively. Applying a similar analysis method, four key environmental variables were chosen for constructing the model of the natural habitat of fava bean weevils. These variables consist of the average temperature in the coldest quarter, precipitation in the driest month, maximum temperature in the hottest month, and precipitation in the wettest month. Their cumulative contribution rates to the MaxEnt model were 48.5%, 39.5%, 7.8%, and 4.2%, respectively. After conducting ten repeats of the MaxEnt model, the average area under the curve (AUC) value for the fava bean weevils training data was 0.938, and for the broad bean weevils training data, it was 0.963. Both values were significantly higher than the AUC value of the random model. These findings indicate the accuracy of the MaxEnt model in predicting suitable areas for Chinese bean weevils and broad bean weevils. Under future climate scenarios, the suitable habitats of these two species of soybean weevils were projected to expand northward. It is recommended to enhance quarantine and control measures for these species to further expand areas for prevention and control.
keywords:Acanthoscelides obtectus  Bruchus rufimanus  MaxEnt model  biological invasion  suitable area  bioclimate factor
查看全文  查看/发表评论  下载PDF阅读器
您是本站第  8708914 版权所有:植物保护学报    京ICP备05006550号-2  
主管单位:中国科协 主办单位:中国植物保护学会、中国农业大学 地址:北京市圆明园西路2号 中国农业大学植物保护学院 植物保护学报编辑部
电话:010-62732528 电子邮件:zbxb@cau.edu.cn
技术支持:北京勤云科技发展有限公司