作物病害监测预警研究进展 |
点此下载全文 |
引用本文:胡小平,户雪敏,马丽杰,黄冲,周益林,徐向明.作物病害监测预警研究进展.植物保护学报,2022,49(1):298-315 |
DOI:10.13802/j.cnki.zwbhxb.2021.2021134 |
摘要点击次数: |
全文下载次数: |
作者 | 单位 | E-mail | 胡小平 | 西北农林科技大学植物保护学院, 旱区作物逆境生物学国家重点实验室, 陕西 杨凌 712100 | xphu@nwsuaf.edu.cn | 户雪敏 | 西北农林科技大学植物保护学院, 旱区作物逆境生物学国家重点实验室, 陕西 杨凌 712100 | | 马丽杰 | 西北农林科技大学植物保护学院, 旱区作物逆境生物学国家重点实验室, 陕西 杨凌 712100 鄂尔多斯生态环境职业学院, 内蒙古 鄂尔多斯 017010 | | 黄冲 | 全国农业技术推广服务中心, 北京 100125 | | 周益林 | 中国农业科学院植物保护研究所, 植物病虫害生物学国家重点实验室, 北京 100193 | | 徐向明 | 英国国家农业植物研究所东茂林病虫害生态学研究组, 东茂林 ME19 6BJ | |
|
|
中文摘要:作物侵染性病害是影响作物安全生产的重要生物灾害,具有突发性、暴发性和强流行性等特点,常常造成巨大的损失。近年来,随着病菌孢子捕捉、遥感、地理信息系统、卫星定位系统、大气环流分析、分子生物学、人工智能、大数据和物联网等技术的快速发展与应用,作物病害监测预警技术取得了重要进展,大幅度提高了对病害监测和预测的准确度。该文综述了小麦、水稻、玉米和马铃薯等粮食作物的6种重大病害监测预警工作的研究进展及应用情况,同时,探讨了我国作物病害监测预警工作中存在的主要问题,并提出了未来作物病害监测预警的前景和发展方向。 |
中文关键词:孢子捕捉 实时定量PCR "3S"技术 智能化 |
|
Research progresses in monitoring and prediction of crop diseases |
Author Name | Affiliation | E-mail | Hu Xiaoping | State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China | xphu@nwsuaf.edu.cn | Hu Xuemin | State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China | | Ma Lijie | State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China Ordos Vocational College of Eco-Environment, Ordos 017010, Inner Mongolia Autonomous Region, China | | Huang Chong | National Agro-Tech Extension and Service Center, Beijing 100125, China | | Zhou Yilin | State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China | | Xu Xiangming | Pest & Pathogen Ecology, East Malling Research, The National Institute of Agricultural Botany, East Malling, West Malling, Kent ME19 6BJ, UK | |
|
|
Abstract:Infectious crop diseases can cause significant food losses due to their explosive nature. In recent years, the rapid development in many areas, such as pathogen inoculum trapping, remote sensing, geographic information system, global positioning system, atmospheric circulation modelling, molecular biology, artificial intelligence, big data analytics and Internet of Things(IoT), has made it possible to predict crop disease development reliably at a fine spatio-temporal resolution. In this review, we reviewed the current status of research and development in monitoring and predicting six major diseases of wheat, rice, maize, and potato. At the same time, we also identified some key research questions on crop disease monitoring and prediction in China that should be tackled in the near future in order to exploit fully these technology advances in disease management. |
keywords:spore trap real-time quantitative PCR "3S"technology intelligent information technology |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|
您是本站第 7959309 版权所有:植物保护学报 京ICP备05006550号-2 主管单位:中国科协 主办单位:中国植物保护学会、中国农业大学 地址:北京市圆明园西路2号 中国农业大学植物保护学院 植物保护学报编辑部 电话:010-62732528 电子邮件:zbxb@cau.edu.cn 技术支持: 北京勤云科技发展有限公司
|