• 首页 | 期刊简介 | 编委会 | 道德声明 | 投稿指南 | 联系我们 | 期刊订阅 | English
抗感褐飞虱水稻遗传群体差异蛋白质组分析
点此下载全文
引用本文:崔百元,张扬,朱庆锋,刘圣杰,何丽云,张振飞.抗感褐飞虱水稻遗传群体差异蛋白质组分析.植物保护学报,2020,47(2):417-425
DOI:10.13802/j.cnki.zwbhxb.2020.2019093
摘要点击次数:
全文下载次数:
作者单位E-mail
崔百元 广东省农业科学院农业生物基因研究中心, 广州 510640  
张扬 广东省农业科学院植物保护研究所, 广东省植物保护新技术重点实验室, 广州 510640  
朱庆锋 广东省农业科学院农业生物基因研究中心, 广州 510640  
刘圣杰 广东省农业科学院农业生物基因研究中心, 广州 510640  
何丽云 广东省农业科学院农业生物基因研究中心, 广州 510640  
张振飞 广东省农业科学院植物保护研究所, 广东省植物保护新技术重点实验室, 广州 510640 zhangzhenfei@gdaas.cn 
中文摘要:为明确抗感褐飞虱Nilaparvata lugens水稻遗传群体在细胞水平的生理变化差异,通过蛋白质组学法对抗褐飞虱水稻遗传群体16W19-1-1和感稻飞虱水稻遗传群体16W45水稻叶片的差异蛋白质组进行研究,采用串联质谱标签标记和液相色谱-串联质谱联用仪进行差异蛋白质谱分析,利用Mascot search results软件进行搜库以确定差异表达蛋白,应用qPCR技术对差异蛋白关联基因在抗感褐飞虱遗传群体中的表达情况进行验证分析。结果表明,从抗感褐飞虱遗传群体中共鉴定出7 625个蛋白,其中差异蛋白229个,涉及上调蛋白156个,下调蛋白73个,主要集中在代谢蛋白、氧化还原蛋白和应激蛋白,主要参与了氰胺基酸代谢、牛磺酸代谢、聚糖降解、脂肪酸链伸长等通路。最终找到9个关键蛋白,关联6种酶,分别为γ-谷氨酰基转移酶、β-葡糖苷酶、β-N-乙酰-D-氨基葡萄糖酶、谷氨酸脱羧酶、甚长链烯酰-CoA还原酶和甚长链3-氧酰辅酶,对应8个基因。表明以上6种酶与植物抗虫性关系密切,可能在上述水稻品系抗褐飞虱中起着重要作用。
中文关键词:水稻  褐飞虱  抗虫性  蛋白质组学  抗虫基因
 
Differential quantitative proteomics analysis between rice genetic populations resistant and susceptible to brown planthoppers
Author NameAffiliationE-mail
CUI Baiyuan Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China  
ZHANG Yang Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China  
ZHU Qingfeng Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China  
LIU Shengjie Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China  
HE Liyun Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China  
ZHANG Zhenfei Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China zhangzhenfei@gdaas.cn 
Abstract:In order to clarify the difference in physiological changes at the cellular level between the rice genetic populations resistant and susceptible to brown planthopper, Nilaparvata lugens, the proteomics methods were used to investigate the differentially expressed proteins (DEPs) between resistant rice line 16W19-1-1 and susceptible rice line 16W45. The spectrum of differential proteins was analyzed by using tandem mass tag (TMT) mark coupled with LC-MS/MS. Mascot search results software was used to search protein library for identification of DEPs. The mRNA expression level at different rice lines were detected by using qPCR technique. The results showed that 7 625 proteins were been identified, among which 229 proteins were DEPs, including 156 up-regulated proteins and 73 down-regulated proteins. The DEPs mainly belonged to metabolic proteins, redox proteins and stress proteins, and mainly participated in the pathways of cyanamidic acid metabolism, taurine metabolism, degradation of glycans, fatty acid chain elongation, etc. Nine key proteins related to six enzymes (gamma-glutamyltransferase, betaglucosidase, beta-N-acetyl-D-glucosaminidase, glutamate decarboxylase, very-long-chain enoyl-CoA reductase, very-long-chain 3-oxoacyl-CoA synthase) and eight protein-associated genes were identified through pathway analysis. Moreover, the correlation between the six enzymes and insect resistance of host plants were analyzed. The six enzymes possibly had a close relationship with host resistance and might play an important role in the resistance of above rice lines to the brown planthopper.
keywords:rice  Nilaparvata lugens  insect resistance  proteomics  insect-resistant genes
查看全文  查看/发表评论  下载PDF阅读器
您是本站第  3552007 版权所有:植物保护学报    京ICP备05006550号-2  
主管单位:中国科协 主办单位:中国植物保护学会、中国农业大学 地址:北京市圆明园西路2号 中国农业大学植物保护学院 植物保护学报编辑部
电话:010-62732528 电子邮件:zbxb@cau.edu.cn
技术支持:北京勤云科技发展有限公司

etiller();